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TSR ARTIFICIAL INTELLIGENCE APPLICATIONS GUIDE 

1. Introduction 

We are entering an era of profound changes in healthcare and radiology, as in many other areas 

of life, with the increasing number of successful applications developed within the scope of 

artificial intelligence (AI) and the introduction of learning algorithms. Although it is accepted 

that we are in the infancy stage of this inevitable change, it is seen that the change will be faster 

than expected. 

Our association, while foreseeing that this change carries a potential threat to our profession, 

aims to focus on the power of AI as a game-changing technology product to provide more new 

opportunities and to ensure that applications are carried out for the benefit of patients and within 

the framework of ethical rules. This guide has been developed to guide our colleagues in the 

problems they may encounter in the field of AI, and to contribute to the use of AI in a way that 

will increase the quality of radiological evaluations, both in the algorithm development phase 

and in clinical applications. 



Our main goal is the continuous development and widespread use of the guide, which is a joint 

product of the TSR Imaging Informatics Working Group. 

2. Related Definitions 

This section provides definitions of frequently used terms in core resources to aid in the 

understanding of AI and related concepts in radiology. Terms are presented with their English 

equivalents. For more detailed definitions, the TSR Imaging Informatics Dictionary at 

https://safari.net.tr/trd-gbs/ can be consulted. 

Here are the detailed explanations of the terms included in this section: 

• Algorithm:  

o The term used for the arithmetical path that determines the steps and the goal 

followed for the realization of a process. 

• Algorithmic Bias:  

o The situation where AI models make incorrect or misleading predictions for 

certain patient groups or disease types due to imbalances in the training data. 

• Artificial Intelligence:  

o The name given to studies that aim to realize the skills that are thought to be 

unique to humans and generally used for communication and problem solving 

by machines. 

• Attribute:  

o The general name of the features in images. 

• Convolutional Neural Networks:  

o A type of multilayer artificial neural network in which the convolution operation 

is used instead of matrix multiplication in at least one of its layers. 

• Data Mining:  

o The effort to extract meaningful results from patterns within big data. 

• Deep Learning:  

o A machine learning field that operates with artificial neural networks and similar 

algorithms containing one or more hidden layers. 

• Expert Systems:  

o A computer program developed to solve a problem, created by utilizing expert 

knowledge, and often using rules in the form of "if/then". 

• Explainable AI (XAI):  

o A set of approaches that make the decision-making mechanisms of AI models 

transparent. 

o Enables users to understand how the model works. 

• Federated Learning:  

o A method of training an algorithm using data from different endpoints instead 

of collecting and using data in a central location in machine learning. 

• Generative Adversarial Networks:  

o Networks capable of making productions similar to real images by comparing 

generated data with real images and using received feedback. 

• Labeling:  

o The process of naming or numbering objects with marking tools in informatics 

applications. 

• Large Language Models:  

https://safari.net.tr/trd-gbs/


o AI models trained with very large-scale text data, capable of generating human-

like text, extracting meaning, and performing a wide variety of language tasks. 

o They learn language structure and context, enabling functions like text 

completion. 

• Machine Learning:  

o An activity area that forms a subset of artificial intelligence applications and 

aims to learn from experiences or extract information from examples. 

• Model Training:  

o The process by which an artificial intelligence model develops the ability to 

solve a specific problem by working on the given training data. 

• Natural Language Processing:  

o The entirety of operations that enable the interpretation of texts, usually in plain 

text, according to certain procedures. 

• Neural Networks:  

o A computer program or system that produces solutions by mimicking neuron 

behavior. 

• Overfitting:  

o A situation where an AI model performs poorly on new data due to excessive 

adaptation to the training data. 

• Parsing:  

o The process of separating text according to grammar rules and determining the 

relationships between words in natural language processing studies. 

• Radiogenomics:  

o A field that aims to develop personalized diagnosis and treatment methods by 

using data obtained from medical imaging and genetic information together. 

• Radiomics:  

o A field of study that aims to extract a large number of quantitative features from 

medical images using data characterization algorithms 1 and to find the clinical 

equivalents of these features.    

• Segmentation:  

o The separation of a desired region or organ from the main structure using various 

algorithms. 

• Supervised Learning:  

o A learning method in machine learning that requires the input of image features. 

• Test Set:  

o An independent data set used to measure how a model will perform in the real 

world after the training and validation phases of a model are completed. 

• Texture Analysis:  

o The mathematical evaluation of spatial heterogeneity in a selected region of an 

image. 

• Training Set:  

o The data set used in the learning process of machine learning and deep learning 

models. 

• Transfer Learning:  

o The use of all or part of the connection coefficients and activation values of a 

machine learning algorithm for solving other problems after learning the 

solution to a problem for classification, regression, or prediction. 

• Unsupervised Learning:  

o A learning method in machine learning where the features used for image 

evaluation are extracted by the algorithms used. 



• Validation Set:  

o The data set used to monitor the performance of machine learning models and 

make hyperparameter adjustments during the training process. 

 

3. General Principles 

The general principles regarding the development, accessibility, trade, use, and responsibility 

sharing of artificial intelligence applications are also valid and similar for applications to be 

developed for the field of radiology. In accordance with the recommendations of relevant 

international institutions, it would be appropriate to pay attention to the following principles: 

• The effects of the use of AI models in the healthcare field on the patient, such as the 

role they play in diagnosis and treatment decisions, should be explainable and shared 

with the patient. 

• The decision to continue or discontinue the use of artificial intelligence models should 

be made by authorized persons, and models should be able to be deactivated when 

necessary. 

• Guiding principles should be determined by organizations with sanctioning power, 

taking into account the views of all stakeholders and the unique strengths and 

weaknesses of countries. 

• The protection of personal data to be used in artificial intelligence studies should be a 

top priority. Individuals should be informed about which data will be used, for what 

purpose, and how. 

• The development stages of artificial intelligence applications should be closely 

monitored, awareness should be raised about their potential dangers as well as their 

benefits, and necessary precautions should be taken at an early stage. 

• Before the use of artificial intelligence models, radiology specialists and other users 

should be provided with training on basic issues such as the operating conditions, 

benefits and potential harms of the system, when to prefer it, and when it may be 

insufficient. 

• It should be guaranteed that all segments of society can benefit equally and fairly from 

the potential benefits of AI models in the healthcare field. 

• In cases where AI models are supported in academic studies, the results obtained should 

be meticulously checked, and the authors should bear the ethical responsibility of the 

final product. Copyrights should be observed, the benefit obtained from the AI model 

should be stated, and data security and confidentiality should be ensured. 

• The algorithms to be developed should be free from biased elements that are contrary 

to human and patient rights and that restrict accessibility. 

• Developers of models that are rapidly being used by the public, especially large 

language models, should have ethical values in the healthcare field. 

• As the use of artificial intelligence applications increases and becomes widespread, 

recurring periodic studies should be carried out on possible ethical and legal problems 

that may be encountered. 

• The purpose of using artificial intelligence in the processing and analysis of medical 

images is to enable experts to better interpret images and make more accurate diagnoses, 

increase clinical utilization, and make the work more economical in terms of time and 

cost. Artificial intelligence will not be a competitor or alternative to radiologists, but 

rather a helpful and useful tool they use. To avoid a wide variety of irreparable medical 



errors, systemic failures, and chaos, artificial intelligence applications should not be put 

into use without radiologist supervision. 

• Artificial intelligence studies should not pursue goals that will take away the jobs of 

radiologists. 

• Radiology specialists and other healthcare professionals should develop their 

knowledge and skills in AI and be open to possible new job divisions. 

• Decisions should be made by determining priority needs in the stages of developing 

artificial intelligence applications and including them in the workflow. 

• The role of AI applications in different clinical scenarios, their place in the workflow, 

and how AI-human collaboration will be should be determined in cooperation, and the 

place of AI applications in the workflow should be determined. 

• Before artificial intelligence applications are used, the institution's infrastructure 

capabilities should be reviewed, and trial versions should be requested. 

• Improving patient-physician communication, enriching the exchange of ideas between 

physicians, increasing the working efficiency of imaging units, continuous professional 

development, and directing specialist students' education towards research that can 

generate added value should be among the goals of radiology specialists who gain extra 

time with AI applications. 

• Studies to be conducted on artificial intelligence should aim to protect and improve the 

patient's health level and improve the deteriorated health condition. 

• Before artificial intelligence models are put into use, their usefulness and limitations on 

the target audience should be tested. Attention should be paid to applications that disrupt 

the workflow, are time-consuming, and do not provide benefits that will make a 

difference in routine practice. 

• In the use of artificial intelligence-supported decision models, care should be taken not 

to restrict the patient's freedom to make decisions on matters related to themselves. 

• Producing and using high-quality data should be the main goal. The 10V rule with its 

English equivalents can be taken as an example in evaluating data quality: Vagueness, 

Variability, Venue, Variety, Value, Volume, Veracity, Validity, Vocabulary, Velocity. 

• The diversity of data sets used for the purpose of developing artificial intelligence 

applications, image quality, and the accuracy of labels, if any, should be checked. 

 

4. Principles to be Followed in Application Development Processes 

4.1. Clinical Problem and Context Determination 

Before developing an artificial intelligence-supported model, the first step should be to identify 

the clinical problem. After identifying situations in practice that are incomplete, complex, 

require numerous calculations, and have accuracy issues, existing AI applications are evaluated. 

Accordingly, a plan is made to develop a new model in line with the identified deficiencies. 

Technical and clinical success criteria (sensitivity/specificity targets, performance metrics, 

shortening of examination interpretation time, improvement of patient survival, etc.) should be 

determined in advance, and the expected benefit of the AI-supported model to be developed for 

the healthcare system should be clearly demonstrated. It should be evaluated whether the 

benefits outweigh the costs of potential negative results that may arise with the model. To avoid 

problems in product conversion, the guidelines and regulations of regulatory institutions in the 

target market (e.g., Software as a Medical Device (SAMD): Clinical Evaluation for the United 

States, EU Artificial Intelligence Act for the European Union) should be carefully reviewed. 



The American College of Radiology (ACR) Data Science Institute (DSI) can also be utilized 

through the Define-AI Directory, which defines target use scenarios for the development of 

effective models suitable for clinical application. 

4.2. Data Collection and Data Management 

4.2.1. Data Collection Strategies 

Clinical information, laboratory findings, radiological images, DICOM metadata, or expert 

labels used in the model development process are called data. Data sources can be PACS 

(Picture Archiving and Communication Systems), electronic health records, radiology reports, 

pathology reports, research and imaging databases. The performance of artificial intelligence 

models is affected by data diversity and quality as well as data size. 

It is a common observation that model performance is directly proportional to the amount of 

data. However, it is currently not possible to accurately estimate the ideal sample size for 

obtaining a successful and generalizable AI model. The minimum number of patients required 

to develop a model largely depends on the complexity of the problem we are trying to solve, 

the targeted model performance, and the modeling method to be used. For example, disease 

detection problems are considered simpler than prognostic problems based on predicting 

treatment response, two-group classification problems are considered simpler than three-group 

classification problems, and radiomics methods are considered simpler than artificial neural 

networks, so they can be planned with a smaller patient cohort. 

From a purely statistical perspective, in a binary classification problem, 10-15 patients are 

required in the training set for each feature participating in the radiomics signature. Several 

basic approaches have been defined that can be used as a guide in determining the data set to 

be used in the training of artificial neural networks. The first approach is to determine the 

training data set according to the number of classes, in which case the recommended minimum 

number of data is 50-1000 times the number of classes. The second approach is based on the 

total number of attributes used. Here, the recommended minimum number of data is between 

10-100 times the number of attributes. However, the most commonly used rule is usually based 

on the number of weights in the network. According to this rule, the recommended minimum 

number of data should be at least 10 times the number of weights. However, these rules are 

generally simplified approaches to facilitate ease of use in real-world applications, and in 

specific cases, the sample size needs to be optimized with the learning curve drawn against the 

success rate. 

It is important that the collected data represents the target population and reflects the 

heterogeneity and diversity in the real world as much as possible. Artificial intelligence systems 

rely on training data and lack context. It is important that the data used to train the artificial 

intelligence system represents the patient population in which the system will be used. In other 

words, if a high-performance model is desired, a training set with a wide variety of cases 

covering various diseases, anatomical variations, imaging protocols, reconstruction methods, 

scanner models, and demographic factors is essential. If the training set lacks diversity, the 

performance of the AI model will decrease when it encounters new cases. The 

representativeness of the data should be comprehensively evaluated during the algorithm 

development process. Possible differences between the collected data and the target population 

characteristics (e.g., which groups are not represented or underrepresented) should be identified 



and reported. In this way, the data can be interpreted correctly and the validity of the results can 

be better evaluated. 

The size and representativeness of the training set can be increased by using multicenter studies 

or open-source image archives. However, multicenter research designs also bring challenges, 

especially in terms of data privacy and security. Open-source image archives, on the other hand, 

may be insufficient, especially for accessing images of rare diseases. Excluding classes 

consisting of rare diseases will bring selection bias, so the target population representativeness 

of the data can be increased and class imbalance can be reduced by grouping all of these diseases 

under the "other" class. 

There are many obstacles in large-scale medical imaging data collection and sharing. 

Differences in DICOM meta tags and naming of imaging examinations are among the main 

problems affecting data integrity. The same body region can be labeled with different titles in 

different clinics or devices. Human errors and lack of training on data management can also 

create variability and errors in the data. Solving these problems requires increasing cooperation 

between device manufacturers and strengthening data management awareness. In addition, 

making the data entered into electronic medical record systems analyzable should be the goal 

of all healthcare systems. The difficulty of obtaining structured data from free-text radiology 

reports can be partially overcome with natural language processing techniques. 

It may not always be possible to create large data sets due to patient privacy concerns and the 

difficulty of accessing high-quality labeled data. Three basic strategies are used to develop high-

performance models with limited data: (i) data augmentation: The data set is enlarged by 

creating synthetic images with methods such as rotation, noise addition, scaling, cropping, 

brightness and contrast adjustment; (ii) semi-supervised learning: In cases where full labeling 

is costly, images with "pseudo-labeling" by a partially trained model are also included in the 

training; (iii) transfer learning: A model pre-trained on a large data set is used as a starting point 

and fine-tuned to adapt to the relevant task. 

4.2.2. Data Improvement (Data Curation) 

Using larger data sets does not always guarantee obtaining higher-performance models. This is 

because poor quality or incorrectly labeled data can also increase the error rates of the model. 

One of the prerequisites for obtaining high-performance models is to use well-organized and 

correctly labeled data sets. However, challenges are experienced in creating such data sets due 

to labor-intensive labeling processes. 

Data curation refers to methods of ensuring the quality, consistency, and overall integrity of 

data. It includes activities such as identifying inconsistencies and duplicates in the database; 

detecting missing data, data in different image formats; finding low-quality images, images 

planned with incorrect examination windows or imaging protocols. 

Detailed evaluation of data quality is frequently recommended. It should be clearly stated how, 

when, and with which tools each variable was measured. Limitations regarding data quality 

must be reported. For data quality and mislabeling control, data should be manually evaluated 

for mislabeling by randomly selecting subgroups, if possible, and the error rate should be 

reported. 



In the literature, significant emphasis is placed on the quality of reference standard data in 

particular. How the data was collected (biopsy, radiology reports, laboratory tests, etc.) and 

potential problems during collection should be discussed. If manual labeling was performed, 

the experience of the labelers must be stated. In order to eliminate bias in the evaluation of 

model performance, it is important that the labeling is done independently and that experts do 

not directly participate in the evaluation of model performance. Inter-observer variability 

should be calculated and reported to measure the quality of labels. 

Commonly used preprocessing techniques include data augmentation, outlier removal, variable 

transformation (e.g., scaling, standardization), and imputation. It is important to clearly state 

the reasons for the transformations applied to the data and the preprocessing steps, along with 

the software used. 

Two solutions are generally recommended for dealing with missing data: imputation and 

exclusion. In addition, using machine learning methods that can work with missing data is also 

an option. Generally, imputation is a preferred solution method compared to completely 

excluding the data. 

Image features may vary depending on the use of different scanners, imaging protocols, or 

reconstruction parameters. These systemic and technical differences that mask biological and 

diagnostic information are also called batch effects. Batch effects can be a more prominent 

factor, especially in multicenter studies or scenarios where magnetic resonance (MR) images 

are used. This is because, in magnetic resonance imaging (MRI), the signal intensity of pixels 

is determined in a non-standardized way, unlike "Hounsfield Unit" (HU), and varies between 

manufacturers. Solutions aimed at eliminating batch effects are called data harmonization. 

Harmonization can be applied at the image or data level. ComBat, an effective solution used at 

the data level, makes data obtained from different devices or centers compatible, making 

analytical results more reliable and comparable. The most commonly used approach at the 

image level is normalization, which includes a series of techniques where pixel values are 

shifted and/or scaled, and can be applied to different image features (such as spatial 

normalization or intensity normalization). Spatial normalization is any process that changes the 

spatial properties of the image (pixel size, field of view-FOV, series orientation, etc.). With 

intensity normalization, the gray values of the pixels are rescaled to the same range, and the 

effect of numerically large values is balanced. Thus, the training time of the model is usually 

reduced and its performance is improved. 

Image resampling is the general name for all geometric transformation operations of digital 

images. This includes operations such as creating new data points with image rotation or 

spatially aligning images obtained at different time points. Medical images are generally larger 

in volume and three-dimensional, so they are more complex than non-medical image tasks. 

Since convolutional neural networks are usually trained with smaller-sized (e.g., 300 x 300 

pixels) two-dimensional images, processing medical images may require more computing 

power. In this case, it may be necessary to reduce the resolution of medical images or perform 

patch-based evaluation. Patch-based evaluation reduces the computational load by dividing the 

image input into sub-sections and enables classification based on a specific region (e.g., an 

algorithm aimed at localizing prostate cancer focuses only on pixels containing the prostate 

gland). Quantitative image analysis methods also require image resampling. Since radiomics 

tries to express tissue heterogeneity with mathematical formulas, it can be affected by voxel 

size. Therefore, it is important to make voxels isotropic in three-dimensional radiomics studies. 



Model performance can be improved with image preprocessing, which includes improving data 

quality by removing noise and artifacts. Spatial mapping can be easily performed with four-

dimensional data, such as in lung or cardiac computed tomography (CT), dynamic imaging, and 

diffusion-weighted imaging, with motion correction procedures. Filtering and motion 

correction procedures are methods that can also distort diagnostic information in images and 

should be avoided as much as possible, especially in prospective studies. MR images are mostly 

positively affected by noise that distorts biological tissue properties due to inhomogeneity in 

the magnetic field, so the use of "bias-field" correction procedures is recommended. 

4.2.3. Ensuring Data Privacy 

One of the main obstacles in the development of artificial intelligence tools is ensuring data 

privacy and overcoming ethical problems. Before starting data collection, it must be ensured 

that the project complies with local personal data privacy legislation. Data protection experts 

should be consulted to take appropriate privacy measures when necessary. Especially in 

prospective studies, patients should be informed about the rationale for using patient data and 

how the data will be used, and informed consent should be obtained. In retrospective studies, 

informed patient consent may not be required since patients do not need to undergo an 

additional procedure. However, whether there is a valid reason for using the data must be 

evaluated by ethics committees in both cases. Especially in retrospective studies, ethics 

committee approval may be easier in cases where obtaining explicit consent from patients is 

not possible, the risks associated with data sharing are minimal, and data controllers can be 

trusted. 

In the process of developing AI-based solutions that can be used in the real world, it may be 

necessary to cooperate with the private sector. Since artificial intelligence developers do not 

have direct access to PACS ("Picture Archiving and Communication System"), the data needs 

to be prepared and transferred. Before data transfer, patient privacy must be protected by de-

identification. De-identification can be done in two different ways: anonymization and pseudo-

anonymization. Anonymization refers to the irreversible removal of patient-related information 

from records. This method is the preferred approach for sharing medical data. Pseudo-

anonymization refers to replacing patient information with artificial values so that the original 

data can only be revealed with a secret key. All sensitive health data to be transferred must be 

removed from both DICOM (“Digital Imaging and Communications in Medicine”) metadata 

and images. The basic anonymization methods offered by most PACS during export may not 

be sufficient. There are multiple tools to automatically and freely remove identifiable 

information from DICOM metadata. DICOM Library and RSNA Clinical Trials Processor can 

be used for this purpose. These are two free and proven tool sets. Even anonymized and 

metadata-stripped images can allow access to patients' identity information, especially in head 

imaging, by detecting facial features. Tools such as Pydeface 

(https://github.com/poldracklab/pydeface) or mridefacer (https://github.com/mih/mridefacer) 

can help automatically remove such facial features from medical images. 

After de-identification, data can be stored for a certain period by transferring it to physical 

servers or the cloud. While cloud-based data storage can bring security concerns, it is an 

expensive solution that requires high internet speed. However, it can greatly benefit multicenter 

studies by facilitating data sharing. To protect privacy during the data storage process, data 

encryption, limiting data access to authorized persons, securely logging transaction records of 

all actions performed on the data, regularly conducting security tests of the environments where 

the data is located, and transparently reporting data breaches are required. In addition, the 

https://github.com/poldracklab/pydeface
https://github.com/mih/mridefacer


duration for which data can be stored should be determined to minimize risks from unauthorized 

access. 

In our country, the Personal Data Protection Law No. 6698 (KVKK) has been published, thus 

regulating activities such as the protection, recording, processing, and sharing of personal data. 

In addition, with the "Regulation on Personal Health Data" that entered into force by being 

published in the Official Gazette on June 21, 2019, the Ministry of Health has determined the 

general framework covering the processing, access, concealment, correction, destruction, 

transfer, and security of health data. According to Article 16 of the regulation, it is stated that 

scientific studies can be conducted with personal health data, provided that it is anonymized by 

the data controller. The transfer of personal health data is regulated by Article 15 of the 

regulation. Accordingly, health data can only be transferred without seeking explicit consent 

from the data subject by persons or authorized institutions and organizations under the 

obligation of confidentiality for the purpose of protecting public health, 1 preventive medicine, 

conducting medical diagnosis, treatment and 2 care services, and planning and managing health 

services and their financing. In other words, regulations governing the confidentiality of health 

data state that explicit patient consent is not required for the processing of completely 

anonymized data and that misuse of data can theoretically be prevented in this way. Article 12 

of the KVKK defines obligations regarding data security. Accordingly, the data controller is 

obliged to take all necessary technical and administrative measures to ensure the security of 

personal data and prevent unlawful access and processing, and to fulfill this obligation jointly 

with data processors. Therefore, researchers may need to take security and privacy measures 

regarding the storage, access, sharing, and destruction of data in scientific research projects and 

record them in a data management plan.    

To overcome concerns about data privacy and regulatory restrictions, federated learning has 

emerged, where data is not transferred outside the hospital, but instead, the AI model is sent to 

hospitals and trained there. The fact that debugging is difficult due to the developers being 

inherently blind to the data may cause the model performance to fall below expectations. 

4.2.4. Image Labeling and Annotation 

Supervised machine learning involves creating algorithms to match medical images or clinical 

variables with "label" data. The development of an effective model depends on the number and 

quality of labeled data. After being trained on labeled data, the algorithm tries to predict the 

label of a new image according to the patterns it has learned. The reference standard represents 

the information that the model needs to learn. Reference standards may vary depending on the 

model's purpose. For example, bounding boxes for localization tasks, pixel-based masks created 

by experts for segmentation tasks, images with category labels for classification tasks, 

measurement markings for tracking tasks, or clinical outcomes (survival, metastasis, 

progression, etc.) for prognosis tasks. 

Depending on the model's purpose, labels can originate from radiology reports, expert reviews, 

clinical or pathological data. The necessity of labeling large data sets for training high-capacity 

neural networks and the labor-intensive nature of the labeling task necessitate alternative 

solutions. These include AI-supported automatic labeling tools (e.g., automatic segmentation 

tools or automatic label extraction from radiology reports), crowd-sourced labeling, and weakly 

supervised learning (training with incomplete labels or low-quality labels). While AI-supported 

automatic labeling methods enable rapid labeling of large data sets, automatic labeling solutions 

suitable for every scenario may not exist, and the human factor is required to control label 



quality. One of the automatic labeling methods is information extraction from radiology reports 

with natural language processing or recurrent neural networks. Information extracted from 

unstructured radiology reports may contain human-induced errors (spelling errors, 

interpretation errors, etc.) or AI-induced errors (individual differences in language usage style, 

etc.). It is estimated that 2-20% of radiology reports contain demonstrable errors. Structured 

reporting can be a solution to obtain higher quality data from reports and make data more easily 

accessible. Distributing the labeling task to a larger number of people can reduce the individual 

labeling burden, but in this case, harmony and consistency problems may arise between 

labelers. Today, non-experts can be used to examine and label large amounts of data to support 

automated services. Recent studies have reported that non-expert observers can be used in 

labeling some medical images. Although these methods simplify the labeling process, the 

generally low quality of the data obtained is a significant limitation. However, it is known that 

models trained using large data sets can show good results even with low-quality data. Model 

training in these types of situations where data is incomplete or unreliable is called weakly 

supervised learning. Two basic weakly supervised learning approaches that can be used to deal 

with incompletely labeled data are active learning and semi-supervised learning. Active 

learning aims to train the model with minimal human labeling effort by iteratively selecting the 

most informative samples from the data pool by experts for the labeling task. 

Determining the reference standard is critical for the reliability of a study and the accuracy of 

its results. In the labeling process, priority should be given to re-evaluation and labeling by 

expert radiologists as much as possible, rather than weak labels extracted from reports. If there 

are multiple labelers, the reliability of the labels should be measured by methods such as inter-

observer agreement (e.g., Cohen's kappa statistic or intra-class correlation-ICC). Establishing a 

standard labeling guide before labeling (e.g., which findings will be considered "positive" or 

"negative"), training observers on this, and performing trial labeling on a small test group will 

increase consistency. Labeling quality and agreement can be monitored by cross-checking 

randomly selected cases at regular intervals. In cases where the manual labeling method is used, 

the details of the labeling process should be clearly reported. This includes the labeler's 

experience, the strategy in handling difficult cases, and the measures taken to minimize bias. In 

addition, how inter-observer variability is handled in the manual labeling process should also 

be reported. 

4.3. Modeling and Validity Test  

A model is a program or algorithm trained to recognize specific patterns. These algorithms 

produce outputs such as predictions, detections, classifications, segmentations, or 

recommendations from input data. Modeling approaches used in image analysis are generally 

divided into two groups: traditional machine learning (requires predefined features) and deep 

learning (automatically learns features from data). Determining the most appropriate method to 

be used in the modeling phase depends on the data type (e.g., text, image, categorical, or 

numerical), problem type (e.g., classification, regression, or survival analysis), available 

computing resources (CPU or GPU), problem complexity, and the preferred balance between 

model accuracy and interpretability. In traditional machine learning methods, predefined and 

formulated features (e.g., radiomics texture features) are extracted from images, and models are 

created using these features with various machine learning algorithms. This approach usually 

offers more useful and interpretable results in small data sets. However, it may be limited in 

performance for complex problems such as image analysis and text recognition. Examples of 

frequently used algorithms in traditional machine learning include support vector machine 

(SVM), random forest (RF), k-nearest neighbor (kNN), and Naive Bayes. There is no single 



and universal algorithm that will give the best result for every problem. Therefore, it is 

recommended to train and compare different algorithms separately and determine the most 

appropriate algorithm for each problem. 

Deep learning is a subfield of machine learning based on multi-layered neural networks. This 

method automatically learns complex features from raw data during the training process, thus 

eliminating the need to manually design features. However, deep learning also has 

disadvantages: the need for a high amount of labeled data, the long and costly training process, 

and low interpretability due to its "black box" structure are the main ones. Today, many deep 

learning architectures specialized for solving different problems have been developed. The most 

important of these architectures are convolutional neural networks (CNN), recurrent neural 

networks (RNN), transformers, and generative models. For example, CNN is the most 

frequently used deep learning architecture, especially in the field of image analysis. As a result, 

traditional machine learning methods can be preferred in limited and well-structured data sets 

or when fast and interpretable results are needed. In contrast, deep learning methods are more 

suitable when dealing with large and complex data sets, especially in problems such as image 

analysis or text recognition. 

For AI models produced in the field of medical imaging, there is confusion between the terms 

"validation" used in machine learning and medical literature. From a machine learning 

perspective, validation refers to selecting and adjusting the best model. However, from a 

medical perspective, validation usually refers to the process of verifying the performance of a 

model on unseen data, similar to the "test set" in machine learning. This difference can cause 

confusion, so the terms "development set" or "validation test set" are sometimes used instead 

of "validation set" in the medical context. 

Data is ideally divided into three sets: training, validation (development), and test. The optimal 

separation ratio varies for each problem, and there is no single solution. As a basic rule, it is 

common practice to split the data as 80% training, 10% validation, and 10% test. However, in 

some sources, it is seen that the validation (development) set is not used. In this case, the 

training:test ratio is usually chosen between 60:40 and 90:10. The validation set is used to 

determine the optimal hyperparameters and select the best model to obtain the best result. The 

test set is used only once to measure the generalizability of the model. In smaller data sets, the 

split validation scheme can prevent the production of strong models due to the inability to 

provide sufficient diversity in the training set and the misleading performance measurement in 

the test set. In such cases, cross-validation can be used if it is not possible to obtain more data. 

In this method, after the data set is divided into k equal layers, the algorithm is trained on almost 

all layers for each training and tested on the excluded layer. The final performance is recorded 

as the average of the k performances measured. 

Independent validation on an external data set should be preferred over internal validation to 

accurately assess the potential and generalizability of the model. In the medical literature, 

external validation is often considered the final test to definitively assess the safety, reliability, 

and generalizability of a model. However, it is seen that the number of studies with external 

validation in the literature is around 6%. Ideally, the data used in external validation should 

reflect the populations for which the final use of the model is intended. However, these data are 

often selected based on suitability and accessibility. As a rule, external validation must be 

carried out by independent researchers from different institutions. Although prospective 

validation is quite rare, it is preferred by the literature because it can give a better idea of the 

actual usability of models. 



Technical performance validity testing is the measurement of the model's performance in 

training and test sets using various quantitative metrics. Performance validation metrics may 

vary depending on the model's purpose. For example, discrimination area under the receiver 

operating curve (ROC), sensitivity, specificity, positive and negative predictive values, 

calibration, and decision curve analysis for classification problems; intersection over union 

(IoU) and/or mean average precision (mAP) for detection problems; IoU and/or Dice score for 

segmentation problems can be used. All performance metrics should be reported separately for 

both training and test sets. This is important as it is informative in evaluating the overfitting of 

the model. In addition, it is important to report the scores of more than one performance metric 

suitable for the model's purpose with confidence intervals and to perform error analyses of 

misclassified cases. Comparing the model's performance with the best current radiological 

practices or alternative AI algorithms is a necessary method in the performance evaluation 

process. 

Clinical validity studies may have the potential to accelerate the integration of models, but 

standards have not yet been established for such studies. However, it is extremely important for 

radiologists to play an active role in the creation and implementation of these standards. In 

clinical validation, in addition to the accuracy of the model, the increased rate of pathology 

detection with the use of AI, the acceleration in reporting time, the change in patient survival, 

or cost-effectiveness analyses can be performed. With the integration of the model, potential 

changes in patient care quality or hospital operations can be analyzed. Possible error scenarios 

can be determined by examining the model's incorrect predictions (false positives and false 

negatives) on a case basis. 

One of the biggest obstacles to creating an effective model that can be adapted to the real world 

and generalized is overfitting. Another reason for this is training with a data set that contains 

sampling errors and has low diversity. When the model over-adapts to the features in the 

training set, it becomes overly sensitive to noise or random changes in the data and cannot be 

generalized to new data sets. This can lead to a decrease in model performance. The adjustment 

set is very important in understanding overfitting. If the model performs well in the training set 

compared to the validation set, it has probably overfitted the training data. Steps such as 

reducing the complexity of the model or training with more data should be taken to reduce 

overfitting. 

Unlike training data sets, keeping validation data sets centrally and having model validation 

done by unbiased third parties can increase confidence in the performance results of models 

and facilitate clinical integration. Competition (challenge) events organized to guide the 

development of artificial intelligence models, make the testing phase reliable and effective by 

providing a central and comprehensive validation set, and increase the confidence of 

radiologists and regulatory institutions by selecting the best of the models with the same 

purpose can be useful. 

It is important that the reference standards of validation data sets have higher standards than the 

data sets used for training. Radiologists should not only ensure that validation data sets are as 

close to the target population as possible, but also play a critical role in defining the criteria 

used for algorithm validation. 

4.3.1. Performance Evaluation 



When evaluating the success of a model's results, not only task success but also transparency 

(explainability), clinical benefit, safety, and stability should be considered. In addition, the 

model's errors should be analyzed, and the model's limitations and potential development 

opportunities should be explored. 

4.3.1.1. Prediction Performance Evaluation 

In simple binary classification problems, the success of diagnostic tools or procedures can be 

evaluated based on metrics such as sensitivity, specificity, positive and negative predictive 

values. Since multiple sensitivity and specificity pairs are generated with changing thresholds, 

there is a need for a single performance metric that can be used for comparison. Receiver 

Operating Curve (ROC) analysis is an important metric that can effectively evaluate the model's 

discrimination performance in this scenario. The most common summary measure of the ROC 

curve is the C statistic or AUC, known as the area under the curve. AUC reflects the probability 

that a patient with the disease will receive a higher risk score from the model than a healthy 

patient. AUC ranges from 0 to 1 and determines the discriminative performance of the 

diagnostic test. However, since an AUC value of 0.5 is equivalent to random prediction, it is 

practically accepted as the lower limit. Since AUC alone may not give accurate results in the 

case of class imbalance, it is important to report other performance metrics such as accuracy, 

sensitivity, specificity, F1 score, and Matthews correlation coefficient. Especially in 

classification tasks, it is important to evaluate confusion matrices, which can provide more 

detailed information about the competencies of models. Performance metrics should be 

carefully selected according to the characteristics of the data, clinical scenario, and the model's 

purpose. Clear and measurable success criteria and performance thresholds should be 

determined in advance with clinicians. In multi-category classifications (e.g., multiple 

pathological diagnoses), performance statistics should be reported separately for each class. 

The average of these statistics can be taken or weighted according to the prevalence of each 

class in the test set. In addition, error matrices must be given to evaluate whether certain classes 

are frequently confused. 

In regression tasks, an attempt is made to predict a continuous and numerical dependent 

variable. Metrics such as R2, mean square error, root mean square error, root mean square 

logarithmic error, and mean absolute error are used for regression models. 

There are a wide variety of metrics for evaluating object segmentation success. However, 

overlap-based metrics are commonly used for this purpose. Object detection and segmentation 

require metrics that define how well an area marked by the model's prediction matches the 

reference area, usually determined by a radiologist. Intersection is the overlap between the 

reference area and the area predicted by the model, while union is the total area covered by the 

predicted area and the reference area. Intersection over Union (IoU) and Dice score are two 

commonly used metrics to measure model performance in segmentation tasks. However, both 

measurement methods also have some limitations and pitfalls. For example, disadvantages such 

as being too sensitive to segmentation errors of small structures, obtaining lower than necessary 

scores in the presence of erroneous reference segmentations, not being sensitive to the shape of 

predicted segmentations, and not being equally affected by too many or too few segmentations 

are among the most well-known. In the object detection task, it can be examined whether the 

detection is correct by determining a threshold value for IoU, as in classification problems. 

4.3.1.2. Calibration Performance Evaluation 



Although ROC curves are widely used, they have some limitations. Basically, AUC is a ranking 

metric and shows how well the model separates patients. However, it does not provide 

information about the accuracy of probability estimates. Therefore, calibration is also very 

important in prediction model evaluation. Calibration is a method that evaluates the similarity 

between predicted probability values and actual probabilities. 

In the calibration curve, the x-axis is the predicted probabilities, while the y-axis is the realized 

probabilities. Predicted probabilities are obtained from the numerical outputs given by the 

model. However, realized probabilities are not observable (e.g., samples are either disease 

positive or negative). Therefore, in order to determine how compatible model predictions are 

with reality, patients with similar predicted probability calculations are grouped (typically 

according to the decimal fractions of the predicted values) and the x-axis is placed from the low 

probability group to the high probability group. A graph is drawn from the points obtained by 

using the average predicted value in each group as the x-coordinate and the actual probability 

(i.e., the ratio of diseased samples to total samples in the group) as the y-coordinate. Perfect 

calibration is parallel to the 45-degree line. Statistical tests such as the Hosmer-Lemeshow 

goodness-of-fit test complement visual evaluation. Non-significant results (e.g., p>.05) suggest 

good calibration, but insufficient data size can lead to false good calibration results. 

4.3.1.3. Clinical Benefit Analysis 

The prediction-oriented progress of artificial intelligence has led to the neglect of clinical 

impact and outcomes. However, a model with high prediction success may not always be 

clinically beneficial. Because clinical benefit is related to calibration performance as well as the 

model's discrimination performance. For example, even if we divide the risk prediction scores 

of a test by ten, the classification performance of the test does not change because the optimal 

threshold value will change accordingly. However, if the patient's probability of having cancer 

drops from 30% to 3%, the patient's or doctor's decision to biopsy is affected, and the risk of 

missing an aggressive cancer arises. At this point, decision curve analysis (DCA) is valuable as 

a method that evaluates the clinical benefit of tests by considering both the discrimination and 

calibration performance of diagnostic tools. Its use is also recommended by the Transparent 

Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis 

(TRIPOD) guide. 

The decision curve is a tool that graphically shows the net benefits of various clinical strategies 

according to different risk thresholds. The horizontal axis contains predetermined possible risk 

thresholds, while the vertical axis contains the net benefit. The area under the decision curve 

(DCA) is a measure of the clinical benefit of the prediction model. Each DCA has at least two 

reference lines, one horizontal and one diagonal, showing two possible option approaches. The 

dotted horizontal line shows the net benefit of a strategy where no patient is treated. The net 

benefit of not treating any patient is always zero. The diagonal dashed line shows the net benefit 

of a clinical strategy where all patients are treated. For risk thresholds below disease prevalence, 

"treat all patients" has a higher net benefit than "treat no patients." For risk thresholds above 

prevalence, the opposite is true and the "treat all patients" approach will create a negative net 

benefit. These two lines represent the two most extreme strategies possible. In reality, any other 

clinical strategy will involve treating certain patients and not treating others. For a model to be 

considered clinically beneficial at a certain threshold, it must have a higher net benefit than 

"treat all" or "treat none." 

4.3.2. Explainability and Interpretability 



Explainable AI is a fundamental part of responsible AI applications. The terms interpretability 

and explainability are two concepts that are confused in machine learning resources. 

Interpretability refers to our ability to directly understand the internal workings and outputs of 

the model (without the need for an additional analysis technique). Explainability, on the other 

hand, emphasizes the need to use additional tools or methods such as LIME, SHAP, and Grad-

CAM, especially to show why complex or "black box" models reach a certain decision. 

Therefore, while interpretability is an inherent feature of the modeling method, explainability 

usually includes additional solutions developed after the model is trained. Explainable AI serves 

various purposes such as supporting human decision-making, increasing transparency between 

AI systems and humans, enabling debugging when unexpected behaviors occur, facilitating 

auditing to meet legal requirements, bringing trust in AI to appropriate levels and facilitating 

clinical integration, and verifying generalization ability. 

There are many explainable AI techniques recommended in the literature. Three different 

elements are based on to classify explainable AI techniques: (i) local and global, (ii) model-

specific and model-independent, (iii) pre-model (natural) and post-model. 

Natural explainability refers to machine learning models (decision trees, linear regression, etc.) 

that are considered interpretable due to their simple structures. Post-model explainability refers 

to making the model explainable with various methods applied later (permutation feature 

importance, integrated gradients, etc.). Model-independent methods are flexible techniques that 

can work with different AI models, whereas model-specific methods, as the name suggests, can 

only work with certain models. Global explainability methods analyze the entire data set to 

understand the general patterns that support the model's predictions. This method provides 

explanations of which patterns in the data are important for the model's predictions. On the 

other hand, local explainability methods focus on explaining a single prediction made by the 

model. In other words, it aims to provide insight into why the model gave a single output in that 

way. 

The explainability of models can be improved with three different methods: feature, text, and 

example-based. Feature-based methods can mark which input has the greatest impact on the 

model result on the original image. In the text-based method, semantic descriptions are used to 

explain the model's decision (for example, an algorithm with an object detection and 

classification task in mammography can mention the spiculated edge feature or high density 

that affects the malignancy probability of the detected lesion). In addition, influence function 

methods are used to analyze which training samples are affected by a certain prediction result 

of an AI model. 

Visualization methods can help uncover disease-related confounding factors (e.g., 

pneumothorax diagnosis with the aid of a chest tube or increased prevalence of pneumonia in 

portable chest films) that can affect the system's performance, as well as increase users' trust in 

the system. Attention maps are frequently used visualization methods and create heat maps by 

marking the pixels that are important for correctly classifying images. However, these maps 

have some risks and limitations. These methods are primarily one of the local explainers used 

only to explain individual predictions rather than analyzing the overall behavior of the model. 

In addition, it can sometimes be difficult to understand what an emphasized area in an image 

actually means. 



In summary, simple modeling methodologies (linear regression, decision trees, etc.) are 

naturally interpretable and do not require an additional method. However, it is essential to use 

additional tools to understand the decision processes of complex models such as deep learning. 

5. Principles to be Followed in Clinical Applications 

5.1. Application Selection 

When selecting artificial intelligence applications for radiology practice, "patient benefit" and 

requirement should be the determining factors. For this purpose, a needs analysis should be 

conducted to determine the problems encountered in the clinical environment and the "necessity 

and most appropriate AI solutions" for these problems. The selected applications should 

significantly affect patient management in the clinic and facilitate workflow and increase 

productivity. In addition, features of the application such as "remote access", "license 

purchase", "pay-as-you-go model" should be discussed by institution managers and practicing 

radiologists, and cost/effectiveness should be considered. 

The validity and effectiveness of the selected AI application should be supported by qualified 

scientific research. These studies should provide reasonable and solid evidence in terms of 

clinical accuracy, sensitivity, and reliability. General and local standards should be met in terms 

of safety, privacy, and effectiveness when using applications. The selected application should 

be approved by CE, FDA, or similar local health authorities. These approvals guarantee that the 

application meets the necessary legal and ethical standards for clinical use. The selected AI 

applications should be user-friendly to accelerate integration in clinical practice. The 

application should integrate seamlessly with existing systems and work in a way that does not 

disrupt and facilitate the clinical workflow. Therefore, integration with information systems 

and PACS should be preferred if possible. This will facilitate its safe and effective use. There 

should be user-friendly interfaces that will enable healthcare personnel to adopt the application 

quickly and effectively. 

5.2. Application Usage 

All measures should be taken for the effective and safe use of AI applications in the clinic. For 

this purpose, the potential weaknesses and safety criteria of AI applications should be known 

and adequately shared with the relevant parties. 

Users should be provided with sufficient training in basic information systems and informatics 

topics, as well as AI applications and the selected AI application specifically. These training 

programs should be effective and able to use all functions of the application, and in this way, 

the application should be used correctly and effectively. 

Ensuring the privacy and security of patient data should be guaranteed. In terms of data security, 

patient information should be protected from unauthorized access. Compliance with ethical and 

legal obligations should be guaranteed with standard protocols. Consistency and security should 

be ensured in clinical applications. 

Mechanisms should be established to continuously monitor and evaluate the performance of 

artificial intelligence applications, and in this way, possible errors and areas for improvement 

should be identified. This continuous evaluation aims to increase the reliability and 

effectiveness of the application. 



Mechanisms should be established where users can provide feedback. In this way, it is aimed 

to continuously improve the application, and user experiences and problems encountered 

should be reported and used for this purpose. 

5.3. Informing Patients About Applications 

Informing patients about the use of artificial intelligence applications should be done primarily 

by considering patient rights and ethical values. For this purpose, patients should be informed 

that applications will be used, and explicit and informed consent should be obtained regarding 

their use. 

Informed consent should clearly include how the application works, what purpose it is used for, 

and what data is collected, enabling patients to make informed decisions in a transparent 

manner. In this way, patients should have a full understanding of the application. 

Patients should be ensured to have appropriate knowledge about the advantages-disadvantages 

and weak-strong points of artificial intelligence uses. The effects of using artificial intelligence 

should not be exaggerated and turned into a commercial promotion. 

The possible risks and potential benefits of the application should be explained to patients. With 

these explanations, all measures should be taken for patients to easily learn about the advantages 

and disadvantages. 

Patients should be informed about which of their data will be used and how, and their data 

privacy rights. It should be stated how the data is protected and for what purposes it is used. 

Conditions should be provided where patients' questions about the application will be answered 

satisfactorily. 

In written or verbal information of patients about the application, patients' cultural levels should 

be considered, and solutions should be provided to reach each patient (or their responsible 

relatives). 

5.4. Reliability Levels of Applications 

Preferably, multiple validity tests should have been performed on how the applications to be 

used perform in the clinical environment with real data sets after they are developed, which 

increases their reliability in the clinical environment. In addition to published scientific 

publications on this subject, studies to be conducted by practitioners in their own clinical 

environments are important. By subjecting the applications to regular quality control tests, it 

should be ensured that their performance remains at a consistently high level. 

In addition to the general performance and accuracy criteria of the applications, it is important 

to monitor the response times. Response times should be short enough to meet specific-clinical 

expectations. It is important that the evaluation of the applications is carried out by independent 

institutions. Applications should be continuously updated and improved at regular intervals to 

be compatible with the latest technological innovations. 

5.5. Continuous Improvement and Quality Audit 



As in all systems, continuous monitoring and improvement of AI algorithms is necessary. For 

this purpose, it is recommended to create working groups at the institutional level and to 

monitor AI tools and measure their performance with the parameters to be determined. It is 

expected that the identified problems will help improve with corrective actions. 

5.6. Reimbursement 

If AI tools that will be added to workflows and increase image and diagnostic quality are used, 

they should be entitled to a refund. This should be carried out fairly with regulations to be made 

by the authorized institutions. 

5.7. Responsibilities 

Who will be responsible for the problems that may arise from the use of artificial intelligence 

tools should be defined by legal regulations. Since there is no national regulation yet, 

applications must be carried out in accordance with the applicable laws. In the specific case of 

radiology, the radiology specialist is the sole responsible for the evaluation and report, and it 

will be appropriate to state in the report if AI tools have been used. 
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